斯坦福密码学专家:「量子优越性」理论成果令人兴奋,但尚不能破坏实际应用中的任何加密技术
撰文:LeftOfCenter
来源:链闻
面对「量子优越性」的挑战,加密算法到底该何去何从呢?加密技术真的没有用了吗?斯坦福大学的顶级密码学专家 Ben Fisch 和 Benedikt Bünz 告诉链闻,Google「量子优越性」研究成果处于初级阶段,尚不具实际破坏作用,但加密行业需要防微杜渐,开发未来可抗量子攻击的替代品基元。
2019 年 10 月 24 日,谷歌 「量子优越性」 论文以封面重磅的形式在 Nature 正式发表。77 位作者合作的重磅论文《使用可编程超导处理器达到的量子优越性》(Quantum supremacy using a programmable superconducting processor),为我们揭开了谷歌 「量子优越性」 实验的全貌。
根据该论文研究,谷歌打造出世界上首台能够超越当今最强大的超级计算机能力的量子计算机,声称该量子系统只用了 200 秒完成一个计算,而同样的计算用当今最强大的超级计算机 Summit 执行,需要约 10000 年。
对于加密货币行业来说,这项研究对带来最大的隐忧是,量子计算机无可比拟的计算能力有可能会破坏加密技术。面对「量子优越性」的挑战,加密算法到底该何去何从呢?加密技术真的没有用了吗?
对此,斯坦福大学的两位密码学专家 Ben Fisch 和 Benedikt Bünz 告诉链闻, Google「量子优越性」研究成果处于初级阶段,尚不具实际破坏作用,但加密行业需要防微杜渐,开发未来可抗量子攻击的替代品基元。
Ben Fisch 和 Benedikt Bünz 合作的 VDF 论文,这是 ETH 2.0 最重要的密码学工具之一
Ben Fisch 是世界著名的计算机密码学家,也是 Findora 首席科学家兼联合创始人。作为斯坦福应用密码学组的博士,他在海量加密存储、密码学累加器和安全多方计算方面取得了突破性成果。 Ben 在密码学方面的成就使零知识技术的电路回路足以满足金融行业应用的性能需求。在共同创立 Findora 之前,Ben 曾经参与并为 Filecoin,Chia 和以太坊的核心协议做出了重大贡献。
Ben Fisch
Ben Fisch 认为,「Google『量子优越性』研究成果尚不能破坏正在应用当中的任何加密技术。」 以下是他对谷歌「量子优越性」的评价:
Google「量子优越性」研究成果尚不能破坏正在应用当中的任何加密技术。说谷歌这项研究发现离我们有多近还为时过早,该计算机测试了误码率相对较高的 54 量子比特组成的处理器,然而在实际应用中,想要挑战当今的加密技术,需要处理的是数千个数量级低误码率的量子比特。因此,对于当今的密码学家来说,要做的就是 防微杜渐,在量子优越性真正达到破坏加密技术那一天到来之前,开发出抗量子攻击的替代品基元,比如各种签名、密钥交换和零知识证明等。另一名斯坦福大学的密码学家 Benedikt Bünz 则认为,「Google 的研究结果令人兴奋,但这绝不意味着应用型量子计算马上就会到来,也不意味着今天的加密算法就没有用了。」
在 CESC 2017 大会中的 Benedikt Bünz
Benedikt Bünz 是世界公认的应用密码学的新星,同时还是 Findora 研究主管和联合创始人。他是革命性的零知识证明技术 Bulletproofs 的发明人。Bulletproofs 目前已在全球范围内迅速推广采用,是 Findora 技术堆栈的核心之一。他的研究兴趣包括密码学、博弈论和加密货币。他研究累加器,零知识证明,可验证的延迟函数,超轻客户端和偿付能力证明。
以下是他对谷歌「量子优越性」的评价:
谷歌向我们展示的是,量子计算机可在几秒钟内完成一项普通计算机需要执行约 10000 年的计算任务,量子计算机在优化、分子建模和量子物理学本身的模拟中展示了很多激动人心的应用。同时,量子计算机也存在风险,完整的量子计算机拥有极低错误率,一旦实现,能破坏当今使用的大部分(但不是全部)加密技术。 Google 的研究结果令人兴奋,但这绝不意味着应用型量子计算马上就会到来,也不意味着今天的加密算法就没有用了。
谷歌计算机解决的任务,涉及以一种非常特殊的方式对随机数进行采样。如果继续往这个方向突破,将会出现让人兴奋的研究结果,因为它首次证明了人类确实可以制造出量子计算机,完成之前不能完成的计算任务。
但是,到目前为止,量子计算机向我们证明了其强大的执行功能,但还不能破坏密码技术。 类似于人类制造出一枚核氢弹,证明核聚变拥有强大的威力,但这离建造一个核聚变反应堆还很遥远。
技术层面上,破解密码学需要非常精确的量子计算机,这难以构造。 Google 研发的量子计算机由 53 量子比特组成,然而 要破解现在的密码技术,需要数千个量子比特的数量级 。更重要的是,这样的计算有可能返回错误的操作结果,比如执行一个 2 + 2 的计算,返回的结果可能是 5。 在经典计算机中,这种情况发生的概率是万亿分之一。在谷歌的量子计算机中,这种情况发生的概率则上升到了 0.1%~3%。想要破坏密码学,量子计算的错误率还需要降低很大的数量级。
为了防御量子计算机未来可能对密码技术造成的破坏,一些密码学家现在正在研究新的抗量子攻击的加密算法,已经有很多有意思的研究正在进行中,目前来看这仍然是一个非常活跃的研究领域。
Ethereum By End Of 2025: Why A Surge Over $4,000 Is Imminent
Ethereum’s price action appears to be setting the stage for a major move that could redefine its mar...
Bitcoin Price Stabilizes After Surge — Is It Gearing Up for Another Leg Up?
Bitcoin price is moving higher above the $93,200 zone. BTC is consolidating gains and might continue...
Bitcoin Overtakes Google in Global Asset Rankings, Eyes NVIDIA Next
Bitcoin jumps to the 5th spot in global asset rankings, surpasses Google, nears NVIDIA, backed by st...