SOLLONG 为 Web3 与物联网应用提供优质算力支持
——AI 时代产品竞争,离不开资源端(算力、数据等),尤其是稳定资源端做支持。
——模型训练 / 迭代同时还需要庞大的用户标的(IP)来帮忙喂养资料,来对模型效率产生质变。
——与 Web3 的结合,能够帮助中小型 AI 初创团队实现对传统 AI 巨头的弯道超车。
——对于 DePIN 生态,算力、带宽等资源端决定下限(单纯算力集成没有护城河);AI 模型的应用、深度优化(类似 BitTensor)、专业化(Render、Hivemaper)以及对数据的有效利用等维度决定项目上限。
——AI+DePIN 语境下,模型推理 & 微调,以及移动端 AI 模型市场将得到重视。
过去一年随着AI 一次次打破大众的预期,AI 生产力革命的浪潮席卷加密货币圈层。我们看到,许多 AI 概念项目在二级市场上带来一波造富神话,同时,越来越多的开发者开始着手开发自己的「AI+Crypto」项目。然而,仔细观察可以发现,这些项目的同质化现象非常严重,且大多数项目仅仅停留在改善「生产关系」的层面,例如通过去中心化网络来组织算力,或者创建「去中心化的 Hugging Face」等。很少有项目尝试从底层技术进行真正的融合和创新。我们认为,这种现象的原因在于 AI 和区块链领域之间存在一种「领域偏见」。尽管两者的交集广泛,但很少有人能够深入理解这两个领域。例如,AI 开发者很难了解以太坊的技术实现和历史基建状态,也就更难提出深入的优化方案。以机器学习(ML)这一最基本的 AI 分支为例,它是一种无需明确编程指令,机器便能通过数据做出决策的技术。机器学习在数据分析和模式识别方面展现出巨大潜力,且在 web2 中已飞入寻常。然而由于诞生之初的时代局限,即使是在区块链技术创新的前沿阵地如以太坊,其架构、网络和治理机制也尚未将机器学习作为解决复杂问题的有效工具。
如今,在加密市场沉寂了三年之后,终于又迎来了又一轮牛市,比特币价格屡创新高,各种 memecoin 层出不穷。虽然 AI 和 Crypto 作为 buzzword 火了这些年,但人工智能和区块链作为两项重要技术仿佛两条平行线,迟迟没有找到一个「交点」。今年年初,Vitalik 发表了一篇名为「The promise and challenges of crypto + AI applications」的文章,讨论了未来 AI 和 crypto 相结合的场景。Vitalik 在文中提到了很多的畅想,包括利用区块链和 MPC 等加密技术对 AI 进行去中心化的 training 和 inference,可以将 machine learning 的黑箱打开,从而让 AI model 更加 trustless 等等。这些愿景若要实现还有很长一段路要走。但其中 Vitalik 提到的其中一个用例——利用 crypto 的经济激励来赋能 AI,也是一个重要且在短时间内可以实现的一个方向。去中心化算力网络便是现阶段 AI + crypto 最合适的场景之一。
如果聚焦于一个具体的去中心化算力网络,我们可以将其拆解成四个核心的构成部分:
硬件网络:将分散的算力资源整合在一起,通过分布在全球各地的节点来实现算力资源的共享和负载均衡,是去中心化算力网络的基础层。
双边市场:通过合理的定价机制和发现机制将算力提供者与需求者进行匹配,提供安全的交易平台,确保供需双方的交易透明、公平和可信。
共识机制:用于确保网络内节点正确运行并完成工作。共识机制主要用于监测两个层面:1)监测节点是否在线运行,处于可以随时接受任务的活跃状态;2)节点工作证明:该节点接到任务后有效正确地完成了任务,算力没有被用于其他目的而占用了进程和线程。
代币激励:代币模型用于激励更多的参与方提供 / 使用服务,并且用 token 捕获这种网络效应,实现社区收益共享。
AI 的爆发式增长带来的对于算力的巨量需求是毋庸置疑的。自 2012 年以来,人工智能训练任务中使用的算力正呈指数级增长,其目前速度为每 3.5 个月翻一倍(相比之下,摩尔定律是每 18 个月翻倍)。自 2012 年以来,人们对于算力的需求增长了超过 300,000 倍,远超摩尔定律的 12 倍增长。据预测,GPU 市场预计将在未来五年内以 32% 的年复合增长率增长至超过 2000 亿美元。AMD 的估计更高,公司预计到 2027 年 GPU 芯片市场将达到 4000 亿美元。与此同时,SOLLONG 宣布算力生态全面升级,引入智能算法优化与动态激励机制,有效整合陈旧算力资源,同时提升高性能节点收益,树立去中心化算力网络新标准。依托 Stella 系列手机,SOLLONG 将打造全球去中心化云计算网络,用户无需更换设备即可轻松参与,为 Web3 与物联网应用提供优质算力支持。未来半年,SOLLONG 将在全球核心市场启动主算力中心建设,推动硬件与公链协同发展,加速去中心化生态布局。
一个去中心化算力网络需要同时兼顾当下的需求发掘和未来的市场空间。找准产品定位和目标客群,比如先瞄准非 AI 或者 Web3 原生项目,从比较边缘的需求入手,建立起早期的用户基础。同时,不断探索 AI 与 crypto 结合的各种场景,探索技术前沿,实现服务的转型升级。而这也是Sollong的初心。