mt logoMyToken
总市值:
0%
恐慌指数:
0%
币种:--
交易所 --
ETH Gas:--
EN
USD
APP
Ap Store QR Code

Scan Download

一文解读零知识证明最新进展:RedShift红移算法

收藏
分享

作者:ZKSwap

写在前面

伴随着区块链的技术发展,零知识证明(ZKP,Zero Knowledger Proof)技术先后在隐私和 Layer2 扩容领域得到越来越多的应用,技术也在持续的迭代更新。从需要不同的 Trust Setup 的 ZKP(例如Groth16),到需要一次 Trust Setup 同时支持更新的 ZKP(例如Plonk),再到不需要 Trust Setup 的 ZKP(例如 STARK),ZKP 算法逐渐走向去中心化,从依赖经典 NP 问题,到不依赖任何数学难题,ZKP 算法逐渐走向抗量子化。

我们当然希望,一个不需要 Trust Setup 同时也不依赖任何数学难题、具有抗量子性的 ZKP 算法也具有较好的效率和较低的复杂度(STARK 的证明太大),它就是 REDSHIFT。

REDSHIFT

《REDSHIFT: Transparent SNARKs from List Polynomial Commitment IOPs》,从名字可以可出,它是基于 List 多项式承诺且具有透明性的 SNARK 算法。算法本身和 PLONK 有大部分的相似之处,唯一不同的是多项式承诺的原语不同。下面先简单的通过一张表格来展示 REDSHIFT 和 PLONK 算法的异同之处,具体如下:

1.png

因此,只要对 PLONK 算法有深入了解的读者,相信再理解 REDSHIFT 算法,将是一件相对简单的事。ZKSwap团队在此之前已经对 PLONK 算法进行了深入的剖析,我们在文章 《零知识证明算法之 PLONK --- 电路》 详细的分析了 PLONK 算法里,关于电路部分的详细设计,包括表格里的《Statement -> Circuit -> QAP》过程,并且还详细描述了 PLONK 算法里,关于“Permutation Check”的原理及意义介绍,文章零知识证明算法之 PLONK --- 协议对 PLONK 的协议细节进行了剖析,其中多项式承诺( Polynomial Commitment)在里面发挥了重要的作用: 保持确保算法的简洁性和隐私性。

我们知道,零知识证明算法的第一步,就是算术化(Arithmetization),即把 prover 要证明的问题转化为多项式等式的形式。如若多项式等式成立,则代表着原问题关系成立,想要证明一个多项式等式关系是否成立比较简单,根据 Schwartz–Zippel 定理可推知,两个最高阶为 n 的多项式,其交点最多为 n 个。

换句话说,如果在一个很大的域内(远大于 n)随机选取一个点,如果多项式的值相等,那说明两个多项式相同。因此,verifier 只要随机选取一个点,prover 提供多项式在这个点的取值,然后由 verifier 判断多项式等式是否成立即可,这种方式保证了 隐私性。

然而,上述方式存在一定的疑问,“如何保证 prover 提供的确实是多项式在某一点的值,而不是自己为了能保证验证通过而特意选取的一个值,这个值并不是由多项式计算而来?”为了解决这一问题,在经典 snark 算法里,利用了 KCA 算法来保证,具体的原理可参见 V 神的 zk-snarks 系列。在 PLONK 算法里,引入了多项式承诺(Polynomial Commitment)的概念,具体的原理可在“零知识证明算法之 PLONK --- 协议”里提到。

简单来说,算法实现了就是在不暴露多项式的情况下,使得 verifier 相信多项式在某一点的取值的确是 prover 声称的值。两种算法都可以解决上述问题,但是通信复杂度上,多项式承诺要更小,因此也更简洁。

协议

下面将详细介绍 REDSHIFT 算法的协议部分,如前面所述,该算法与 PLONK 算法有很大的相似之处,因此本篇只针对不同的部分做详细介绍;相似的部分将会标注出来方便读者理解,具体如下图所示:

2.png

协议的 1-6 步骤在 PLONK 的算法设计里都有体现,这里着重分析一下后续的第 7 步骤。

在 PLONK 算法里,prover 为了使 verifier 相信多项式等式关系的成立,由 verifier 随机选取了一个点,然后 prover 提供各种多项式(包括 setup poly、constriant ploy、witness poly)的 commitment,由于使用的 Kate commitment 算法需要一次 Trust Setup 并依赖于离散对数难题,因此作为 PLONK 算法里的子协议,PLONK 算法自然也需要 Trust Setup 且依赖于离散对数难题。

在 REDSHIFT 协议里,多项式的 commitment 是基于默克尔树的(简单讲,计算多项式在域 H 上的所有值,并当作默克尔树的叶子节点,最终形成的根,即为 commitment)。若 prover 想证明多项式在某一个或某些点的值,证明方只需要根据这些值插值出具体的多项式,然后和原始的多项式做商并且证明得到商也是个多项式(阶是有限制的)即可。

当然为了保护隐私,需要对原始多项式做隐匿处理,类似于上图协议中的第一步。在实际设计中,为了方便 FRI 协议的运行,往往设计原始多项式的阶 d = 2^n + k (其中 k = log(n))。

免责声明:本文版权归原作者所有,不代表MyToken(www.mytokencap.com)观点和立场;如有关于内容、版权等问题,请与我们联系。
相关阅读

DeFi潮流新风口:从链上数据看跨链桥的发展新方向

总锁仓额突破131亿美元,9月独立地址总数超12万个

Bitwise 向美SEC提交比特币策略ETF申请,旨在投资比特币期货和其他金融产品

PANews 9月15日消息,根据一份公开的监管文件,资产管理公司Bitwise 下属部门 Bitwise Index Services 向美国证券交易委员会(SEC)递交了比特币期货交易所交易基金 ETF申请,新基金名为Bitwise Bitcoin Strategy ETF。旨在投资比特币期货和其他金融产品。该文件称:“该基金不会直接投资于比特币,虽然该基金主要通过间接投资于在 CFTC 注册的商品交易所交易的标准化、现金结算的比特币期货合约来获得比特币敞口,但它也可能投资于集合投资工具和加拿大上市的提供比特币敞口的基金”。文件显示,ETF 还可能投资于现金、美国政府证券或货币市场基金。US Bancorp Fund Services 将担任转账代理和管理人,而美国银行将担任托管方。据了解,美国证券交易委员会(SEC)至今还未批准任何比特币 ETF 基金。此外,美证监会主席 Gary Gensler 表示该机构更有可能批准比特币期货 ETF 而不是现货 ETF,因为期货 ETF 将投资于芝加哥商品交易所(CME)提供监管的比特币期货产品,而比特币现货则不受监管。来源链接

知情人士:因需求强烈,Coinbase计划发行的债券或增加至20亿美元

PANews 9月15日消息,有知情人士称,此前计划发行15亿美元债券的Coinbase会将交易规模提升至20亿美元,因为至少已经有70亿美元的订单涌入。其他知情人士表示,等额的7年期和10年期债券将分别以3.375%和3.625%的利率发行,低于最初讨论的借贷成本。彭博社表示,固定收益投资者对该产品的热捧,代表了加密货币不再是一个专属于风险资本的行业,因为养老基金和对冲基金在内的专注投资债务的投资者都希望参与到此次的投资中。此前根据 Coinbase 提交给美国证券交易委员会(SEC)文件显示,Coinbase 将通过私募发行 15 亿美元于 2028 年和 2031 年到期的有担保高级票据,这些票据将由 Coinbase 的全资子公司 Coinbase, Inc. 提供全额无条件担保。来源链接